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Abstract
Measuring machining parameters is essential for influencing the quality and precision of the finished product in the manu-
facturing and machining industries. Machine vision systems, which provide an in-depth investigation of these parameters,
are essential resources for this purpose. To evaluate machining parameters such as tool wear, surface roughness, and defects,
this article investigates machine vision and its techniques. It also explores tool condition monitoring (TCM), a subject that is
becoming more and more important. To achieve precision, high-resolution cameras with CCD or CMOS sensors in conjunc-
tion with deliberate illumination are essential. Area, compactness, and perimeter metrics are essential for assessing machining
parameters because they offer insightful information about a variety of situations and enhance tool performance. By effec-
tively utilizing these techniques, machinery can be converted into intelligent systems that improve safety, reliability, and
product quality by preventing tool failure and optimizing cutting feed rates. A thorough review of the literature highlights the
advantages of combining the direct and indirect TCMmeasurement methods, improvingmeasurement accuracy. Additionally,
the detection of tool wear problems like chipping, crater wear, and fractures is significantly aided by the integration of digital
image processing techniques.

Keywords Tool condition monitoring · Machining parameters · Machine vision · Roughness parameters · Digital image
processing

1 Introduction

The evaluation of machining parameters is critical for pre-
dicting tool lifespan within a machine. This makes it easier
to supervise and investigate how tool wear affects both the
quality of the workpiece and the economic viability of the
machining and manufacturing process. Due to the rapid
measurement capabilities attained through the fusion of cam-
eras, computer hardware, and sensors, there has recently
been a growing fascination with vision-based examination
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of tool measurements in the manufacturing sector [1–3].
The assessment of geometric attributes, dimensional preci-
sion, and surface texture, in addition to the monitoring of
tool conditions (TCM), is currently regarded as a critical
machining parameter within the industry. When differences
in tool attributes cause specific components to fail during the
design and assembly phases, optical measurements become
critical. Within this context, machine vision technology has
emerged as amodern instrumentation trend, owing to its user-
friendliness and advanced capabilities [4]. The utilization of
machine vision inmanufacturing is essential in reducing pro-
duction time and improving the quality of the product. These
processes are commonly referred to as "automated inspection
systems" [5–7].

Improving tool and instrumentation methods to include
the intricate measurement of various elements such as key-
ways, circular components, and fractional arcs is a significant
step forward. These developments include autonomous mea-
surement methodologies that make use of localized sensors
and computer hardware [8].
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Previously, numerous researchers have delved into the uti-
lization ofmachine vision to assess tools, encompassing tasks
such as detecting tool wear [9, 11], monitoring tool condition
[12, 13], evaluating intermittent parameters [8], appraising
surface finish [14], identifying fractured inserts [15], gauging
crack length [16], automating visual inspections [17], pin-
pointing contouring errors [18], assessing nose radius wear
[19, 20], quantifying surface roughness [21], characterizing
wear autonomously [5], measuring non-contact roughness
[22], compensating for measurement losses in metrology
[23], evaluating milling cutters [24], mitigating chatter [25,
26], confirming machine setup [27], creating models [28],
and conducting dimensional measurements [29].

Tool wear can have a negative impact on the work-
piece, causing damage, decreased precision in the product,
compromised surface integrity, and increased chatter. Exten-
sive research into tool wear and the evaluation of various
machining parameters has highlighted the importance of
machine vision-based systems and methodologies. Notably,
these have proven helpful for measuring tool wear [30–32].
Figure 1 visually represents measuring tool wear using
machine vision technology.

The combination of statisticalmethodologies andmachine
vision has resulted in improvements in the identification and
detection of tool wear [34–39]. Many researchers in the field
of machine vision have developed algorithms for segmenting
tool zones and detecting edges [34, 38].

Novel methodologies for quantifying volumetric wear
within the flank wear and crater regions of machinery have
emerged, including "white light interferometry" [40, 41],
and "stereo vision algorithms" [42]. [43] and [44] outline a
thorough examination of various sensor-driven technologies,
decision-making strategies, and signal processing to improve
the effectiveness of machining procedures.

Numerous methodologies for monitoring tool conditions
in machining tools have been proposed, including direct and
indirect approaches, as well as online and offline strategies.
Danes et al. [36] used statistical attributes and the "undeci-
mated wavelet transform" to examine tool wear concerning
the surface texture of the machined component during the
turning operation.

Yu et al. used edge detection techniques and morpholog-
ical element analysis to detect and recognize wear edges
in operational scenarios [37]. Furthermore, artificial neural
networks (ANN) have been used in quasi-orthogonal exper-
iments on steel with a tungsten carbide insert to demonstrate
an immediate and self-directed exploration of crater wear
[38].

The assessment of tool wear within a workpiece can be
accomplished using digital image processing (DIP) algo-
rithms in MATLAB. This method employs a high-resolution
CCD camera, fluorescent HF lights, and a data acquisition

module [41]. Figure 2 depicts a step-by-step flowchart of the
tool wear measurement process using DIP.

Schmitt et al. [11] have developed an autonomous system
for detecting tool wear, which uses contour algorithms and
neural networks for flank wear measurement [11, 46].

Fernandez et al. [47] developed an algorithm for the real-
time detection of defects and anomalies in milling machine
cutting edges, all while ensuring uninterrupted machining
processes. The algorithm they proposed consists of three dis-
tinct phases: image degradation computation, the application
of a smoothing filter that retains edge information, and an
assessment of damage to cutting edges based on geometric
attributes.

Several studies have attempted to measure and quantify
the volume of the tool wear region. One such approach
involves approximating the wear section as an ellipse and
measuring its geometrical parameters to determine the flank
wear region. In a similar vein, researchers in [19] approxi-
mated the cutting-edge section as a disk with a radius like
that of the tool nose to calculate the tool nose.

Numerous tool parameters that can be evaluated using
machine vision or image processingmethods have been stud-
ied by researchers. The wear land area and width, perimeter,
lengths of the major and minor axes, compactness, eccen-
tricity, angle, phase orientation, solidity, equivalent diameter,
extent, flank width, and nose radius are a few of these.

Digital image analysis for measuring various machining
parameters, including tool condition monitoring (TCM), is
the focus of this article’s exploration of machine vision tech-
niques and processes.

2 Fundamental process of machine vision
system

The fundamental process of machine vision comprises five
steps, and below are the details of each step [48, 49]:

2.1 Image capturing

The initial stage of the process involves capturing the image
through a CCD camera as soon as the light is emitted from
the source. The illuminated image is then converted into a
digital format using image sensors [48, 49].

2.2 Image acquisition

To convert the optical image into a digital image, a process
is followed. This process involves sub-steps such as image
sensing, image data depiction, and image digitization. Ulti-
mately, the optical image is transformed into a digital image
in this step.
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Fig. 1 Process flow diagram for calculating tool wear [33]

Fig. 2 A flowchart for measuring
tool wear using the DIP
algorithm [45]
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2.3 Image processing

Following the start of machine vision, the next step is to
arrange and prepare the pixel values inherent in an image.
This process transforms the visual elements of the image into
a structure appropriate for later processing steps. Geometric,
neighborhood, temporal, global, and point operations are the
five divisions of this phase.

2.4 Feature extraction

This step involves recognizing or identifying the inherent
qualities or characteristics of the object, thing, or image.

2.5 Pattern classification

The final stage of machine vision involves pattern classifi-
cation. This critical step involves identifying unfamiliar or
unclassified elements and images within a well-known col-
lection of objects and images. The fundamental procedures
and methodologies involved in machine vision approaches
for calculating machining parameters are shown in Fig. 3.

3 TCMmeasurement withmachine vision

Factors such as depth of cut, workpiece material, cutting
speed, feed rate, and toolmaterial all have a significant impact
on tool quality. Furthermore, coolant selection, tool geom-
etry, and the state of the machining tool are all critical in
determining both the tool’s quality and the final product out-
come [50, 51].

Similarly, monitoring the tool’s condition and wear is cru-
cial in determining product quality. Tool wear is typically
classified into two categories, namely, crater wear and flank
wear, highlighting the significance of wear measurement in
machining.

A process to measure TCM is depicted in Fig. 4. The
CCD camera captures images of the tooltip before and after
machining. Then, these pictures are uploaded to a computer
equipped with a camera interface and frame buffer. The edge
detection method is used to identify and classify sharp edges
to distinguish between the background and the object. The
tool’s tip region must then be calculated under both worn and
unworn conditions. The subtraction process is carried out by
aligning the images of the tooltip in both conditions with
great care.

To assess tool condition monitoring (TCM), the tools
are cleaned to remove chips and coolant particles, which
is accomplished using air nozzles to ensure unobstructed
images. Three factors must be carefully considered when
capturing images for TCM measurement: the tool’s posi-

tioning, its geometry or angle, and the appropriate light
intensity. These elements work together to enable distinct
object-background differentiationwithin the captured image.
Visual examination of the images aids in determining the
machining area or worn section of the tool. Notably, the
grayscale values in this region are generally higher than in the
unworn portions, making the distinction between the worn
area and the unaffected zone simple. Figure 4 shows the TCM
measurement process, which entails using a CCD camera to
take pictures of the tool both before and after the machining
operation.Then, a computer equippedwith a framebuffer and
camera interface components receives these images. Using
an edge detection strategy, the method recognizes and clas-
sifies sharp edges to distinguish between the object and the
background. The tooltip region is then computed for both
the unworn and worn states, followed by a meticulous image
alignment for the subtraction process involving the unworn
and worn tooltip conditions [52, 53].

Chen’s study [54] utilized "blob analysis" to monitor tool
conditions based on grayscale pixel sets. In this method, a
"blob" refers to a group of pixels. The identification of image
features relies on the analysis of various characteristics. In
contrast, in a separate study [5], the author focused on two
types of features: pixel set area/region and perimeter, and
compactness.

The region of the pixel group is determined by the number
of pixels in the tool wear area. On the other hand, the perime-
ter of the tool wear area is defined as the entire length of a
pixel. By dividing the blob area by its width, compactness
is determined. Three machine vision statuses—high order,
steady status area, and enhanced tool status rate—are distin-
guished using blob analysis. For the initial cutting edge, a
high-order method is used, and the steady status area is used
to lessen micro-roughness on the tool surface. The enhanced
tool status rate is also used to lessen tool micro-roughness
when necessary and to enhance workpiece and tool inter-
action. Researchers introduced these techniques, and their
implementation was aided by machine vision techniques [5,
54].

The three stages presented in the machine vision system
utilize techniques that yield impressive results in measuring
parameters such as perimeter, area/region, and compactness.
These processes demonstrate a remarkable level of accuracy
in estimating wear rates, showcasing a strong correlation
between the estimated and actual values.

The measurement of tool region in [6] involves the appli-
cation of the RMS deviation approach with an exciting
region. This technique considers several critical parameters
such as the grey values present in the captured digital images,
the average grey value, and the number of pixels within the
desired area of focus.
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Fig. 3 Machine vision
techniques’ foundational
procedures [14]

Fig. 4 Measurement of tool wear
using machine vision [14]

4 Image processing techniques
for measuring TCM

To measure tool wear or TCM, any machine vision approach
must beginwith the acquisition of images. InTCM, images of
the cutting tool are taken fromCCD (charged coupled device)
or CMOS digital cameras, including details like the flank
surface, rake face, or workpiece surface. CCD cameras use
CCD sensors, which function as an array of light-sensitive
elements, collecting electric charges generated by absorbed
photons. These charges are transformed into electrical sig-
nals, which a frame grabber then transforms into digital
images. These images are then fed into a computer for fur-
ther processing [4]. CMOS sensors, on the other hand, have
a faster capture rate, allowing them to capture frames at a
higher frequency than CCD cameras.

However, CMOS sensors are generally less sensitive com-
pared to CCD sensors. Continuously sensed data must be
transformed into a digital format, which consists of the two
crucial processes of quantization and sampling. While quan-
tization refers to the digitization of continuous amplitude
values, sampling entails the digitization of coordinate and
amplitude values. To further process the image, techniques

for imagemodification like linear interpolation, cubic convo-
lution interpolation, and cubic interpolation can also be used
[55].

In terms of illumination, an image can be characterized
by two main elements [56]:

– The total occurrence of illumination sources over the scene
– The overall illumination that the object reflects.

To enhance the quality of the images, image pre-
processing techniques like histogram equalization, contrast
stretching, noise reduction through filtering, and uneven
illumination correction are used. Among these, histogram
equalization and contrast stretching stand out as widely used
and important techniques. When it comes to noise reduction,
a practical approach involves the use of "low pass (LP) filter-
ing." This method significantly enhances image smoothness
by employing LP filtering in both the frequency and spatial
domains [57].

Following the pre-processing phase, the next steps are
edge detection and image segmentation. These steps are
intended to identify the feed line edgeswithin the imageof the
machined surface and to separate the post-machining region
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Fig. 5 Flowchart for the DIP
technique-based TCM
measurement procedure

(worn area) of the cutting tool from the unworn section.
Threshold and edge detection is finished before morpholog-
ical operations like closing, erosion, opening, and dilation
are carried out. These operations are critical for precisely
identifying wear patterns. These procedures achieve a more
refined morphology while preserving essential information
by manipulating the grey values within the profile [58].
Figure 5 uses a flow diagram to show the measurement pro-
cess for TCM using the DIP technique.

The process ofmeasuring TCM through image processing
can be categorized into two techniques: direct and indirect.
The details of each technique are presented below.

4.1 Direct measurement of TCM through image
processing

Crater wear and flank wear are two wear systems that occur
during the useful life of cutting tools. While crater wear hap-
pens on the tool’s rake face and affects the cutting process
by changing the chip-tool interface, flank wear happens on
the relief face of the tool as a result of rubbing action on
the machined surface. Tool wear gradually increases during
machining and depends on factors such as the tool material,

cutting conditions, and lubricant used. Online measurement,
a subset of the direct TCMmeasurement technique, is one of
the many processes for measuring tool wear using DIP. The
depth of the crater can be determined more difficultly than
the flank wear by photographing the cutting tool [59].

Using machine vision technology, Peng et al. [60] intro-
duces a novel strategy to improve tool utilization and lower
costs in milling processes. The authors develop a thorough
tool wear monitoring system that combines hardware and
software elements to take pictures of flank wear and perform
automated wear detection. In complex milling operations,
the proposed wear criteria, based on VBmax, VBave, and
AVB, offer a more nuanced assessment of tool wear. Exper-
iments with nickel-based superalloy face milling are done
to test the system’s performance, and wear measurements
from the monitoring system and an ultra-depth microscope
are compared. The system’s high precision is shown by the
results, which have a negligible relative error of less than
7.53%. This specially created tool wear monitoring sys-
tem demonstrates its effectiveness in on-machine tool wear
monitoring during milling processes, indicating its potential
for real-world application and significant advantages in the
machining industry.
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Using machine learning and computer vision techniques,
[61] introduces a novel method for classifying cutting tool
wear in edge profile milling processes. The authors create
a new dataset with 212 tool wear images for evaluation and
use B-ORCHIZ, a novel shape-based descriptor derived from
wear region images. A support vector machine (SVM) is
used in the study’s experiments to classify the wear levels
into two and three categories. Notably, B-ORCHIZ performs
better than other shape descriptors, with accuracy rates rang-
ing from 80.24% to 88.46% in a variety of situations. The
research also provides a hierarchical cluster analysis, pro-
totype wear level images, and insightful information about
the development of the wear process. The findings show
a potential route for automating tool wear monitoring in
edge profile milling operations, highlighting the potential
for improved tool wear assessment and monitoring in this
particular machining domain.

The research conducted by the authors in [62] involved
capturing images of tool inserts using ring light fromdifferent
angles of incidence. Subsequently, the captured images were
compared, and the problem of inhomogeneous illumination
was addressed to obtain more accurate measurements for
complex cutting edges. However, the techniques proposed in
this study were not tested for other wear conditions.

The authors of [63] developed software for measuring
flank wear by detecting edges from colored images. This
method is based on statistical filtering, in which a group of
nearby pixels is chosen, and the means and standard devi-
ations of each primary color—red, blue, and green—are
determined for each. Then, a comparison factor is obtained
from these set parameters. The edge is correctly identified in
the final step by considering higher comparison factor val-
ues for the cutting edge among the oxidized and worn zones.
However, the resolution of this software is limited to a width
of 10 mm for low flank wear.

The researcher presented a novel three-dimensional (3D)
approach for quantifying tool wear in micro-milling tools
with a 50 mm diameter [64]. Using a flexible camera and
tool plane configuration, images with a 15 mm resolution
are acquired using this technique. The captured image is
then used to reconstruct a three-dimensional representation
using digital focus measurement. The researchers suggested
that the 3D computer-aided design (CAD) model and the 3D
image of the tool could be combined to measure tool wear.
Nonetheless, a comprehensive evaluation of the efficacy of
this technique has yet to be completed. Numerous techniques
for direct TCMmeasurement using DIP are listed in Table 1.

Table 1 Techniques for direct TCM measurement using DIP

Authors Image
processing
technique

Machining
techniques

Tool wear
measurement
type

Wei et al. [65] Thresholding,
median
filtering

Turning,
milling

Flank wear

Loizuo et al.
[66]

Manual
measurement
with DIP
software

Tool inserts Flank wear

Lee et al. [67] Spatial trans-
formation

inserts Nose wear

Prabhu et al.
[68]

Shadow
removal, edge
detection

inserts Flank wear

Jywe et al.
[69]

Thresholding
detection

Inserts Flank wear

Garcia-Ordas
et al. [70]

Contour
signature

inserts High and low
wear

Joseph et al.
[71]

Gaussian LPF,
B-spline
smoothing

Multilayer
twist drill

Flank wear

Zawai et al.
[72]

Edge detection Drilling Drill-bit

4.2 In-direct measurement of TCM through image
processing

Surface finish descriptors are derived from acquired images
of machined surface textures using digital image process-
ing (DIP) methods applied to indirect TCM. TCM via
image analysis employs two distinct methods: online and
offline techniques. The online method entails photographing
machined surfaces with CMOS or CCD cameras, which are
frequently suitable for large or extended components. The
offline technique, on the other hand, involves capturing sur-
face images after specific components have been machined
and is commonly used for smaller and lighter parts.

To maintain machining precision, [35] introduces a novel
method for estimating the wear level of cutting inserts. The
method uses statistical learning and a computer vision sys-
tem to analyze 1383 flank images from a CNC parallel lathe.
The use of a variety of geometrical descriptors results in the
identification of three key descriptors: eccentricity, extent,
and solidity, which together account for over 98% of the
crucial classification information. Three wear levels—low,
medium, and high—are identified by the research using a
finite mixture model. Monitoring the evolution of tool wear
makes it possible to estimate wear levels during machining.
The results suggest a standard for tool replacement, recom-
mending that replacement be started as soon as the wear level
is about to leave the medium class, halting the progression
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into the high wear category. This method not only helps to
maintain part tolerances but also shows improved tool life,
emphasizing its usefulness in machining operations.

With the aid of ANFIS, researchers developed a method
for predicting surface roughness using image texture descrip-
tors like the arithmetic mean, standard deviation of grey
levels, and spatial frequency. The investigation shows that
higher surface roughness values result in a significant reduc-
tion in error rates. The discrepancy between expected and
actual surface roughness measurements is less than that of
the polynomial network method. It is important to note that
the method has only been tested with turning operations that
employ a single material for the workpiece and cutting tool.
Furthermore, its application has yet to expand into the realm
of continuous wear monitoring [73].

The method proposed in [74] involves an assessment
and evaluation of the machined surface image’s grey-level
histogram to characterize its roughness. The authors have dis-
covered a nonlinear ratio between the distribution’s spread
and mean values. The method, however, is sensitive to the
uniformity and level of illumination of the surface because it
is based on the grey-level histogram. Additionally, the grey-
level histogram does not yield any information about spatial
distribution.

The evaluation of surface quality using digital image anal-
ysis has been explored in [75]. According to the spacing and
quantity of grey-level peaks per unit length of the scanned
line in the grey-level image, the suggested method calculates
surface roughness. However, the proposed one-dimensional
(1D) method was found to be sensitive to noise, lighting, and
lay angle, and it did not fully exploit the 2D information of
the surface image.

The study described in [76] delves into the analysis of the
scatter pattern produced by white light on a ground surface,
intending to determine a roughness factor using vision-based
methods. This factor is calculated by squaring the differ-
ence in pixel values within an 8-neighborhood. The study
contrasts the roughness measurements for copper, brass, and
steel made using a stylus and vision. Between 0.78 and 0.93
is the observed linear correlation coefficient. Priya et al. [77]
propose that the correlation varies depending on the mate-
rial, influenced by the various tearing and fracture modes
encountered during grinding. To determine the technique’s
accuracy, a more comprehensive analysis encompassing var-
ious cutting conditions is required. Numerous techniques for
in-direct TCM measurement using DIP are listed in Table 2.

In the field of machining, image processing methods for
tool condition monitoring have attracted a lot of interest.
Numerous studies examine direct and indirect measurement
techniques, each offering particular insights. Using image
texture analysis, Jurkovic st al [86] explores direct mea-
surement with image processing for tool wear assessment.
In Lutz et al.’s work, image processing and deep learning

Table 2 DIP-based in-direct TCM measurement methods Al domain
light

Authors Image processing
technique

Illumination
system

Gadelmawla et al.
[78]

Polynomial network
with
self-organized
adaptive learning

Two light sources
were placed at an
actual angle with
workpiece axis

Tian et al. [79] SD of grey level Diffused blue light
with 45 deg
lnclination

Fekri-Ershad et al.
[80]

Histogram analysis
of 1st order
statistical texture

The scatted pattern
of light

[81], Baaziz et al.
[82]

Spatial and freq
domain-based
texture
examination

–

Wang et al. [83] Threshold and flank
wear analysis

–

Ong et al. [84] Decomposition of
wavelet packet

Diffused light

Ambadekar et al. [85] GLCM approach
with pixel pair
spacing (PPS)

Diffused light

are used for tool condition monitoring, which is a similar
strategy [87]. In terms of indirect measurement, Xiaoli Li
[88] investigate using acoustic emission in combination with
image processing to track tool wear. Like this, Zang et al.
[89] suggest a novel technique for indirectly monitoring tool
wear that includes both vibration signals and image process-
ing. Additionally, for a thorough tool condition assessment,
Machikhin et al. [90] investigate amultimodal approach com-
bining acoustic emission and image processing. Together,
these studies highlight the adaptability and potential of image
processing in tool condition monitoring, addressing both the
needs of direct and indirect measurement.

Manufacturers must carefully consider the economic via-
bility of non-contact machine tool monitoring techniques.
These methods have several benefits that can boost a busi-
ness’s bottom line, but they are also expensive. Using
non-contact monitoring, tool conditions andmachining oper-
ations can be evaluated in real time. This can result in less
downtime and highermachine utilization, which can increase
production output and reduce costs. Non-contact monitoring
can reduce the production of defective parts and the need for
pricey rework or scrap, leading to cost savings by identify-
ing tool wear and other issues early on. Early recognition of
tool wear and damage can help determine when to replace
the tool, extending its useful life and lowering replacement
costs. The need for quality control procedures and potential
product recalls can be decreased by consistent monitoring,
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which can lead to higher-quality components and goods.
Automated non-contact monitoring eliminates the need for
arduous human supervision and manual inspection, poten-
tially lowering labor costs.

5 Conclusion

Machine vision measurements of machining parameters like
TCM and tool wear require a high-resolution camera with
either a CCD sensor or a CMOS sensor and backlighting.
Area, compactness, and perimeter play critical roles in the
evaluation of machining parameters, holding significance
across steady-state, higher-order conditions, and contributing
to the improvement of tool status throughout the machining
process. Combining the techniques with these parameters
can reduce or eliminate the occurrence of tool failure. Fur-
thermore, the machine vision process has the potential to
reduce the cutting feed rate, allowing previously existing
autonomousmachinery to evolve into intelligent systems that
improve safety, reliability, and product quality.

Following a thorough examination of the literature, the
combination of direct and indirect TCM measuring tech-
niques has the potential to improve measurement precision.
This combined approach validates the results of indirect
TCMmeasurementmethods by incorporating direct method-
ologies within a single experimental configuration. Further-
more, the use of DIP techniques provides significant benefits
in the detection of tool wear, such as autonomously identify-
ing issues such as tool chipping, craterwear, and tool fracture.
These modern techniques can effectively address these con-
cerns, which are often difficult to discern using traditional
models.

Author contributions Conceptualization: DRP; Methodology: ADO;
Formal analysis and investigation: MK; Writing—original draft prepa-
ration: DRP; Writing—DRP and ADO; Supervision: DRP.
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Machine visionmicro-milling toolwear inspection by image recon-
struction and light reflectance. Precis. Eng. 44, 236–244 (2016).
https://doi.org/10.1016/j.precisioneng.2016.01.003
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